Translate

<===Welcome to ZK's Blog<=>Get your fun in here<=>Don't forget to follow this blog and like the fanpage===>

Senin, 06 Juni 2011

Teori Kinetik Gas


Suhu suatu gas monatomik ideal adalah suatu ukuran yang berhubungan dengan rata-rata energi kinetik atom-atomnya ketika mereka bergerak. Di dalam animasi ini, ukuranatom-atom helium relatif terhadap jarak mereka ditunjukkan berdasarkan skala tekanan di bawah 1950 atmosfer. Atom-atom bersuhu kamar ini memiliki laju rata-rata yang pasti (di sini diperlambat dua triliun (10^{12}) kali lipat).
Di pertengahan abad ke-19, ilmuwan mengembangkan suatu teori baru untuk menggantikan teori kalorik. Teori ini bedasarkan pada anggapan bahwa zat disusun oleh partikel-partikel sangat kecil yang selalu bergerak. Bunyi teori Kinetik adalah sebagai berikut:
Dalam benda yang panas, partikel-partikel bergerak lebih cepat dan karena itu memiliki energi yang lebih besar daripada partikel-partikel dalam benda yang lebih dingin.
Teori Kinetik (atau teori kinetik pada gas) berupaya menjelaskan sifat-sifatmakroscopik gas, seperti tekanan, suhu, atau volume, dengan memperhatikan komposisi molekular mereka dan gerakannya. Intinya, teori ini menytakan bahwa tekanan tidaklah disebabkan oleh denyut-denyut statis di antara molekul-molekul, seperti yang diduga Isaac Newton, melainkan disebabkan oleh tumbukanantarmolekul yang bergerak pada kecepatan yang berbeda-beda. Teori Kinetik dikenal pula sebagai Teori Kinetik-Molekular atau Teori Tumbukan atau Teori Kinetik pada Gas.


Postulat

Teori untuk gas ideal memiliki asumsi-asumsi berikut ini:
  • Gas terdiri dari partikel-partikel sangat kecil, dengan [massa] tidak nol.
  • Banyaknya molekul sangatlah banyak, sehingga perlakuan statistika dapat diterapkan.
  • Molekul-molekul ini bergerak secara konstan sekaligus acak. Partikel-partike yang bergerak sangat cepat itu secara konstan bertumbukan dengan dinding-dinding wadah.
  • Tumbukan-tumbukan partikel gas terhadap dinding wadah bersifat lenting (elastis) sempurna.
  • Interaksi antarmolekul dapat diabaikan (negligible). Mereka tidak mengeluarkan gaya satu sama lain, kecuali saat tumbukan terjadi.
  • Keseluruhan volume molekul-molekul gas individual dapat diabaikan bila dibandingkan dengan volume wadah. Ini setara dengan menyatakan bahwa jarak rata-rata antarpartikel gas cukuplah besar bila dibandingkan dengan ukuran mereka.
  • Molekul-molekul berbentuk bulat (bola) sempurna, dan bersifat lentur (elastic).
  • Energi kinetik rata-rata partikel-partikel gas hanya bergantung kepada suhu sistem.
  • Efek-efek relativistik dapat diabaikan.
  • Efek-efek Mekanika kuantum dapat diabaikan. Artinya bahwa jarak antarpartikel lebih besar daripada panjang gelombang panas de Broglie dan molekul-molekul dapat diperlakukan sebagai objek klasik.
  • Waktu selama terjadinya tumbukan molekul dengan dinding wadah dapat diabaikan karena berbanding lurus terhadap waktu selang antartumbukan.
  • Persamaan-persamaan gerak molekul berbanding terbalik terhadap waktu.
Lebih banyak pengembangan menenangkan asumsi-asumsi ini dan didasarkan kepada Persamaan Boltzmann. Ini dapat secara akurat menjelaskan sifat-sifat gas padat, sebab mereka menyertakan volume molekul. Asumsi-asumsi penting adalah ketiadaan efek-efek quantum,kekacauan molekular dan gradien kecil di dalam sifat-sifat banyaknya. Perluasan terhadap orde yang lebih tinggi dalam kepadatan dikenal sebagai perluasan virial. Karya definitif adalah buku tulisan Chapman dan Enskog, tetepi terdapat pengembangan yang lebih modern dan terdapat pendekatan alternatif yang dikembangkan oleh Grad, didasarkan pada perluasan momentum. Di dalam batasan lainnya, untuk gas yang diperjarang, gradien-gradien di dalam sifat-sifat besarnya tidaklah kecil bila dibandingkan dengan lintasan-lintasan bebas rata-ratanya. Ini dikenal sebagai rezim Knudsen regime dan perluasan-perluasannya dapat dinyatakan dengan Bilangan Knudsen.
Teori Kinetik juga telah diperluas untuk memasukkan tumbukan tidak lenting di dalam materi butiran oleh Jenkins dan kawan-kawan.


Faktor


Tekanan

Tekanan dijelaskan oleh teori kinetik sebagai kemunculan dari gaya yang dihasilkan oleh molekul-molekul gas yang menabrak dinding wadah. Misalkan suatu gas denagn N molekul, masing-masing bermassa m, terisolasi di dalam wadah yang mirip kubus bervolume V. Ketika sebuah molekul gas menumbuk dinding wadah yang tegak lurus terhadap sumbu koordinat x dan memantul dengan arah berlawanan pada laju yang sama (suatu tumbukan lenting), maka momentum yang dilepaskan oleh partikel dan diraih oleh dinding adalah:
\Delta p_x = p_i - p_f = 2 m v_x\,
di mana vx adalah komponen-x dari kecepatan awal partikel.
Partikel memberi tumbukan kepada dinding sekali setiap 2l/vx satuan waktu (di mana l adalah panjang wadah). Kendati partikel menumbuk sebuah dinding sekali setiap 1l/vx satuan waktu, hanya perubahan momentum pada dinding yang dianggap, sehingga partikel menghasilkan perubahan momentum pada dinding tertentu sekali setiap 2l/vx satuan waktu.
\Delta t = \frac{2l}{v_x}
gaya yang dimunculkan partikel ini adalah:
F = \frac{\Delta p}{\Delta t} = \frac{2 m v_x}{\frac{2l}{v_x}} = \frac{m v_x^2}{l}
Keseluruhan gaya yang menumbuk dinding adalah:
F = \frac{m\sum_j v_{jx}^2}{l}
di mana hasil jumlahnya adalah semua molekul gas di dalam wadah.
Besaran kecepatan untuk tiap-tiap partikel mengikuti persamaan ini:
 v^2 = v_x^2 + v_y^2 + v_z^2
Kini perhatikan gaya keseluruhan yang menumbuk keenam-enam dinding, dengan menambahkan sumbangan dari tiap-tiap arah, kita punya:
\mbox{Total Force} = 2 \cdot \frac{m}{l}(\sum_j v_{jx}^2 + \sum_j v_{jy}^2 + \sum_j v_{jz}^2) = 2 \cdot \frac{m}{l} \sum_j (v_{jx}^2 + v_{jy}^2 + v_{jz}^2) = 2 \cdot \frac{m \sum_j v_{j}^2}{l}
di mana faktor dua muncul sejak saat ini, dengan memperhatikan kedua-dua dinding menurut arah yang diberikan.
Misalkan ada sejumlah besar partikel yang bergerak cukup acak, gaay pada tiap-tiap dinding akan hampir sama dan kini perhatikanlah gaya pada satu dinding saja, kita punya:
F = \frac{1}{6} \left(2 \cdot \frac{m \sum_j v_{j}^2}{l}\right) = \frac{m \sum_j v_{j}^2}{3l}
Kuantitas \sum_j v_{j}^2 dapat dituliskan sebagai {N} \overline{v^2}, di mana garis atas menunjukkan rata-rata, pada kasus ini rata-rata semua partikel. Kuantitas ini juga dinyatakan dengan v_{rms}^2 di mana vrms dalah akar kuadrat rata-rata kecepatan semua partikel.
Jadi, gaya dapat dituliskan sebagai:
F = \frac{Nmv_{rms}^2}{3l}
Tekanan, yakni gaya per satuan luas, dari gas dapat dituliskan sebagai:
P = \frac{F}{A} = \frac{Nmv_{rms}^2}{3Al}
di mana A adalah luas dinding sasaran gaya.
Jadi, karena luas bagian yang berseberangan dikali dengan panjang sama dengan volume, kita punya pernyataan berikut untuk tekanan
P = {Nmv_{rms}^2 \over 3V}
di mana V adalah volume. Maka kita punya
PV = {Nmv_{rms}^2 \over 3}
Karena Nm adalah masa keseluruhan gas, maka kepadatan adalah massa dibagi oleh volume  \rho = {Nm \over V} .
Maka tekanan adalah
 P = {2 \over 3}  \frac{\rho\ v_{rms}^2}{2}
Hasil ini menarik dan penting, sebab ia menghubungkan tekanan, sifat makroskopik, terhadap energi kinetik translasional rata-rata per molekul {1 \over 2} mv_{rms}^2 yakni suatu sifat mikroskopik. Ketahuilah bahwa hasil kali tekanan dan volume adalah sepertiga dari keseluruhan energi kinetik.


Suhu dan energi kinetik

PV = NkBT(1)
dimana B adalah konstanta Boltzmann dan T adalah suhu absolut. Dan dari rumus diatas, dihasilkan Gagal memparse (kesalahan sintaks): PV={Nmv_{rms}^2\overset 3}
Derivat:
Nk_BT=\frac{Nmv_{rms}^2}{3}
T=\frac{mv_{rms}^2}{3k_B}(2)
yang menuju ke fungsi energi kinetik dari sebuah molekul
mv_{rms}^2=3k_BT
Energi kinetik dari sistem adalah N kali lipat dari molekul K=\frac{Nmv_{rms}^2}{2}
Suhunya menjadi
T=\frac{2K}{3Nk_B}(3)
Persamaan 3 ini adalah salah satu hasil penting dari teori kinetik
Rerata energi kinetik molekuler adalah sebanding dengan suhu absolut.
Dari persamaan 1 dan 3 didapat:
PV=\frac{2K}{3}(4)
Dengan demikian, hasil dari tekanan dan volume tiap mol sebanding dengan rerata energi kinetik molekuler. Persamaan 1 dan 4 disebut dengan hasil klasik, yang juga dapat diturunkan dari mekanika statistik.
Karena 3N adalah derajat kebebasan (DK) dalam sebuah sistem gas monoatomik dengan N partikel, energi kinetik tiap DK adalah:
\frac{K}{3 N}=\frac{k_B T}{2}(5)
Dalam energi kinetik tiap DK, konstanta kesetaraan suhu adalah setengah dari konstanta Boltzmann. Hasil ini berhubungan dengan teorema ekuipartisi. Seperti yang dijelaskan pada artikel kapasitas bahang, gas diatomik seharusnya mempunyai 7 derajat kebebasan, tetapi gas yang lebih ringan berlaku sebagai gas yang hanya mempunyai 5. Dengan demikian, energi kinetik tiap kelvin (gas ideal monoatomik) adalah:
  • Tiap mole: 12.47 J
  • Tiap molekul: 20.7 yJ = 129 μeV
Pada STP (273,15 K , 1 atm), didapat:
  • Tiap mole: 3406 J
  • Tiap molekul: 5.65 zJ = 35.2 meV


Banyaknya tumbukan dengan dinding

Jumlah tumbukan atom dengan dinding wadah tiap satuan luar tiap satuan waktu dapat diketahui. Asumsikan pada gas ideal, derivasi dari menghasilkan persamaan untuk jumlah seluruh tumbukan tiap satuan waktu tiap satuan luas:
A=\frac{N\cdot v_{avg}}{4V}=\frac{\rho}{4}\sqrt{\frac{8kT}{\pi m}}\frac{1}{m}.


Laju RMS molekul

Dari persamaan energi kinetik dapat ditunjukkan bahwa:
v_{rms}^2=\frac{3RT}{\mbox{massa mol}}
dengan v pada m/s, T pada kelvin, dan R adalah konstanta gas. Massa molar diberikan sebagai kg/mol. Kelajuan paling mungkin adalah 81.6% dari kelajuan RMS, dan rerata kelajuannya 92.1% (distribusi kelajuan Maxwell-Boltzmann).


Banyaknya tumbukan dengan dinding

One can calculate the number of atomic or molecular collisions with a wall of a container per unit area per unit time.
Assuming an ideal gas, a derivation results in an equation for total number of collisions per unit time per area:
A = \frac{1}{4}\frac{N}{V} v_{avg} = \frac{\rho}{4} \sqrt{\frac{8 k T}{\pi m}} \frac{1}{m}. \,


Laju RMS molekul

From the kinetic energy formula it can be shown that
v_{rms}^2 = \frac{3RT}{\mbox{molar mass}}
with v in m/s, T in kelvins, and R is the gas constant. The molar mass is given as kg/mol. The most probable speed is 81.6% of the rms speed, and the mean speeds 92.1% (distribution of speeds). hk


Sejarah

In 1738 Daniel Bernoulli published Hydrodynamica, which laid the basis for the kinetic theory of gases. In this work, Bernoulli positioned the argument, still used to this day, that gases consist of great numbers of molecules moving in all directions, that their impact on a surface causes the gas pressure that we feel, and that what we experience as heat is simply the kinetic energy of their motion. The theory was not immediately accepted, in part because conservation of energy had not yet been established, and it was not obvious to physicists how the collisions between molecules could be perfectly elastic.
Other pioneers of the kinetic theory (which were neglected by their contemporaries) were Mikhail Lomonosov (1747),Georges-Louis Le Sage (ca. 1780, published 1818),John Herapath (1816) and John James Waterston (1843), which connected their research with the development of mechanical explanations of gravitation. In 1856 August Krönig (probably after reading a paper of Waterston) created a simple gas-kinetic model, which only considered the translational motion of the particles. 
In 1857 Rudolf Clausius, according to his own words independently of Krönig, developed a similar, but much more sophisticated version of the theory which included translational and contrary to Krönig also rotational and vibrational molecular motions. In this same work he introduced the concept of mean free path of a particle.  In 1859, after reading a paper by Clausius, James Clerk Maxwell formulated the Maxwell distribution of molecular velocities, which gave the proportion of molecules having a certain velocity in a specific range. This was the first-ever statistical law in physics.In his 1873 thirteen page article 'Molecules', Maxwell states: “we are told that an 'atom' is a material point, invested and surrounded by 'potential forces' and that when 'flying molecules' strike against a solid body in constant succession it causes what is called pressure of air and other gases.”In 1871, Ludwig Boltzmann generalized Maxwell's achievement and formulated theMaxwell–Boltzmann distribution. Also the logarithmic connection between entropy and probability was first stated by him.
In the beginning of twentieth century, however, atoms were considered by many physicists to be purely hypothetical constructs, rather than real objects. An important turning point was Albert Einstein's (1905)and Marian Smoluchowski's (1906) papers on Brownian motion, which succeeded in making certain accurate quantitative predictions based on the kinetic theory.
untuk media pembelajaran anda bisa download di link ini

Sabtu, 28 Mei 2011

Macam" dan Cara Kerja Otot

Macam" Otot
Berdasarkan struktur dan fungsinya, otot di bagi menjadi 3:
-Otot Polos
-Otot Lurik
-Otot Jantung
1.Otot Polos



Dibawah mikroskop sel otot polos ini tampak polos dan tidak bergaris melintang.Otot ini banyak di jumpai pada organ-organ dalam,misalnya usus, dan pembuluh darah.


Ciri-ciri otot polos adalah sebagai berikut:
1. Berbentuk gelendong
2. Satu sel pada masing-masing sel.
3. Tidak memiliki garis melintang.
4. Bekerja di luar kesadaran kita,sehingga disebut otak tak sadar.
2.Otot Lurik
Dibawah mikroskop tampak daerah gelap dan terang berselang-seling pada badan selnya.Oleh karena itu, otot ini disebut otot lurik.Daerah gelap terang itu muncul karena adanya molekul-molekkul protein aktif dan miosin yang tersusun dalam suatu susunan yang khas.Pada kehidupan keseharian otot ini dikenal sebagai daging yang melekat pada rangka.
Otot ini memiliki beberapa ciri diantaranya:
1. Sel otot lurik berbentuik silindris, memanjang dan mempunyai inti sel.


2. Terlihat garis selang-seling jika dilihat dengan mikroskop.



3. Otot ini bekerja dalam kendali pikiran dan kesadaran klita.Karenanya otot ini disebut otot sadar.


3.Otot Jantung
Otot ini hanya terdapat pada otot jantung.Otot ini dikelompokkan tersendiri karena perbedaan sifatnya denngan kedua kelompok yang lain. Dilihat dari struktur penampangnya,otot jantung mmirip dengan otot lurik karena adanya warna gelap terang ddddi sepanjang otot tersebut. Akan tetapi berbeda dengan otot lurik,otot jantung memiliki ssifat sebagaimana otot polos yaitu: bekerja di luar kesadaran dan kontrol pikiran kita.
Cara KerjaOtot
Dengan adanya protein khusus aktin dan miosin, otot bekerja dengan memendek (berkontraksi) dan mengendur (relaksasi)
Cara kerja otot dapat dibedakan :
• Secara antagonis atau berlawanan; yaitu cara kerja dari dua otot yang satu berkontraksi dan yang lain relaksasi.
Contoh: Otot trisep dan bisep pada lengan atas.
• Secara sinergis atau bersamaan; yaitu cara kerja dari dua otot atau lebih yang sama berkontraksi dan sama-sama berelaksasi.
Contoh : – otot-otot pronator yang terletak pada lengan bawah
- otot-otot dada
- otot-otot perut
Jika anda ingin mendownload klik Macam" dan Cara Kerja Otot.ppt

Jaringan Tulang

Umumnya penyusun tulang diseluruh tubuh kita semuanya berasal dari material yang sama. Dari luar ke dalam secara berurutan akan dapat menemukan lapisan-lapisan :
  1. Periosteum
  2. Tulang kompak
  3. Tulang spongiosa
  4. Sumsum tulang
1.Periosteum


Pada lapisan pertama kita akan bertemu dengan yang namanya periosteum. Periosteum merupakan selaput luar tulang yang tipis. Periosteum mengandung osteoblas (sel pembentuk jaringan tulang), jaringan ikat dan pembuluh darah. Periosteum merupakan tempat melekatnya otot-otot rangka (skelet) ke tulang dan berperan dalam memberikan nutrisi, pertumbuhan dan reparasi tulang rusak.

2.Tulang Kompak (Compact Bone)
Pada lapisan kedua ini kita akan bertemu dengan tulang kompak. Tulang ini teksturnya halus dan sangat kuat. Tulang kompak memiliki sedikit rongga dan lebih banyak mengandung kapur (Calsium Phosfat dan Calsium Carbonat) sehingga tulang menjadi padat dan kuat.
Kandungan tulang manusia dewasa lebih banyak mengandung kapur dibandingkan dengan anak-anak maupun bayi. Bayi dan anak-anak memiliki tulang yang lebih banyak mengandung serat-serat sehingga lebih lentur.
Tulang kompak paling banyak ditemukan pada tulang kaki dan tulang tangan.

Gambar lapisan kedua tulang kompak
3.Tulang Spongiosa (Spongy Bone)

Pada lapisan ketiga ada yang disebut dengan tulang spongiosa. Sesuai dengan namanya tulang spongiosa memiliki banyak rongga. Rongga tersebut diisi oleh sumsum merah yang dapat memproduksi sel-sel darah. Tulang spongiosa terdiri dari kisi-kisi tipis tulang yang disebut trabekula.

Gambar struktur tulang spongiosa dan trabekula.
4.Sumsum Tulang (Bone Marrow)

Lapisan terakhir yang kita temukan dan yang paling dalam adalah sumsum tulang. Sumsum tulang wujudnya seperti jelly yang kental. Sumsum tulang ini dilindungi oleh tulang spongiosa seperti yang telah dijelaskan dibagian tulang spongiosa. Sumsum tulang berperan penting dalam tubuh kita karena berfungsi memproduksi sel-sel darah yang ada dalam tubuh.
Berdasarkan jaringan penyusun dan sifat-sifat fisiknya tulang dibedakan menjadi dua jenis, yaitu:

1.Tulang Rawan (Kartilago)
Tulang rawan adalah tulang yang tidak mengandung pembuluh darah dan saraf kecuali lapisan luarnya (perikondrium). Tulang rawan memiliki sifat lentur karena tulang rawan tersusun atas zat interseluler yang berbentuk jelly yaitu condroithin sulfat yang didalamnya terdapat serabut kolagen dan elastin. Maka dari itu tulang rawan bersifat lentur dan lebih kuat dibandingkan dengan jaringan ikat biasa.
Pada zat interseluler tersebut juga terdapat rongga-rongga yang disebut lacuna yang berisi sel tulang rawan yaitu chondrosit.


Tulang rawan terdiri dari tiga tipe yaitu:

1. Tulang rawan hialin; tulang yang berwarna putih sedikit kebiru-biruan, mengandungserat-serat kolagen dan chondrosit. Tulang rawan hialin dapat kita temukan pada laring, trakea, bronkus, ujung-ujung tulang panjang, tulang rusuk bagian depan, cuping hidung dan rangka janin.

Gambar stuktur tulang rawan hialin
2. Tulang rawan elastis; tulang yang mengandung serabut-serabut elastis. Tulang rawan elastis dapat kita temukan pada daun telinga, tuba eustachii (pada telinga) dan laring.
Gambar struktur tulang rawan elastis
3.Tulang rawan fibrosa; tulang yang mengandung banyak sekali bundel-bundel serat kolagen sehingga tulang rawan fibrosa sangat kuat dan lebih kaku. Tulang ini dapat kita temukan pada discus diantara tulang vertebrae dan pada simfisis pubis diantara 2 tulang pubis.
Gambar struktur tulang rawan elastis
Pada orang dewasa tulang rawan jumlahnya sangat sedikit dibandingkan dengan anak-anak. Pada orang dewasa tulang rawan hanya ditemukan beberapa tempat, yaitu cuping hidung, cuping telinga, antar tulang rusuk (costal cartilage) dan tulang dada, sendi-sendi tulang, antarruas tulang belakang dan pada cakra epifisis.
thoarcic_cage.jpg
Salah satu contoh tulang rawan pada tulang rusuk
2). Tulang Keras (Osteon)
Tulang keras atau yang sering kita sebut sebagai tulang berfungsi menyusun berbagai sistem rangka. Tulang tersusun atas:
(a). Osteoblas: sel pembentuk jaringan tulang
(b). Osteosit: sel-sel tulang dewasa
(c). Osteoklas : sel-sel penghancur tulang

14-compact-bone-osteons.jpg
Foto struktur bagian dalam tulang
Matriks tulang Tulang Kompak
Tulang kompak terdiri dari sistem-sistem Havers. Setiap sistem Havers terdiri dari saluran Havers (Canalis= saluran) yaitu suatu saluran yang sejajar dengan sumbu tulang, di dalam saluran terdapat pembuluh-pembuluh darah dan saraf.
Disekeliling sistem havers terdapat lamela-lamela yang konsentris dan berlapis-lapis.Lamela adalah suatu zat interseluler yang berkapur. Pada lamela terdapat rongga-rongga yang disebut lacuna. Di dalam lacuna terdapat osteosit. Dari lacuna keluar menuju ke segala arah saluran-saluran kecil yang disebut canaliculi yang berhubungan dengan lacuna lain atau canalis Havers. Canaliculi penting dalam nutrisi osteosit. Di antara sistem Havers terdapat lamela interstitial yang lamella-lamelanya tidak berkaitan dengan sistem Havers.
Pembuluh darah dari periostem menembus tulang kompak melalui saluran volkman dan berhubungan dengan pembuluh darah saluran Havers. Kedua saluran ini arahnya saling tegak lurus. Dan tulang spons tidak mengandung sistem Havers.

Proeses pembentukan tulang Bagaimana?

Pembentukan Tulang

Osifikasi atau yang disebut dengan proses pembentukan tulang telah bermula sejak umur embrio 6-7 minggu dan berlangsung sampai dewasa. Osifikasi dimulai dari sel-sel mesenkim memasuki daerah osifikasi, bila daerah tersebut banyak mengandung pembuluh darah akan membentuk osteoblas, bila tidak mengandung pembuluh darah akan membentuk kondroblas.

Pembentukan tulang rawan terjadi segera setelah terbentuk tulang rawan (kartilago). Mula-mula pembuluh darah menembus perichondrium di bagian tengah batang tulang rawan, merangsang sel-sel perichondrium berubah menjadi osteoblas. Osteoblas ini akan membentuk suatu lapisan tulang kompakta, perichondrium berubah menjadi periosteum. Bersamaan dengan proses ini pada bagian dalam tulang rawan di daerah diafisis yang disebut juga pusat osifikasi primer, sel-sel tulang rawan membesar kemudian pecah sehingga terjadi kenaikan pH (menjadi basa) akibatnya zat kapur didepositkan, dengan demikian terganggulah nutrisi semua sel-sel tulang rawan dan menyebabkan kematian pada sel-sel tulang rawan ini.
Kemudian akan terjadi degenerasi (kemunduran bentuk dan fungsi) dan pelarutan dari zat-zat interseluler (termasuk zat kapur) bersamaan dengan masuknya pembuluh darah ke daerah ini, sehingga terbentuklah rongga untuk sumsum tulang.
Pada tahap selanjutnya pembuluh darah akan memasuki daerah epiphise sehingga terjadi pusat osifikasi sekunder, terbentuklah tulang spongiosa. Dengan demikian masih tersisa tulang rawan dikedua ujung epifise yang berperan penting dalam pergerakan sendi dan satu tulang rawan di antara epifise dan diafise yang disebut dengan cakram epifise.
Selama pertumbuhan, sel-sel tulang rawan pada cakram epifise terus-menerus membelah kemudian hancur dan tulang rawan diganti dengan tulang di daerah diafise, dengan demikian tebal cakram epifise tetap sedangkan tulang akan tumbuh memanjang. Pada pertumbuhan diameter (lebar) tulang, tulang didaerah rongga sumsum dihancurkan oleh osteoklas sehingga rongga sumsum membesar, dan pada saat yang bersamaan osteoblas di periosteum membentuk lapisan-lapisan tulang baru di daerah permukaan.jika ingin mendowload file pptnya klik Jaringan Tulang.ppt

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More